Efficient discretization and preconditioning of the singularly perturbed reaction-diffusion problem

نویسندگان

چکیده

• We consider the reaction diffusion problem for singular perturbed case when term dominates equation. Using optimal test norm and SP reformulation, we provide efficient discretization processes. present a preconditioning strategy that works large range of perturbation parameter. introduce simplified Bramble-Pasciak-Vassilevski type preconditioner. ways to discretize precondition in concepts saddle point processes uniform non-uniform meshes. Numerical examples illustrate efficiency method are included on unit square.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical analysis of singularly perturbed nonlinear reaction-diffusion problems

Semilinear reaction-diffusion two-point boundary value problems with multiple solutions are considered. Here the second-order derivative is multiplied by a small positive parameter and consequently these solutions can have boundary or interior layers. A survey is given of the results obtained in our recent investigations into the numerical solution of these problems on layer-adapted meshes.

متن کامل

Uniform error estimates in the finite element method for a singularly perturbed reaction-diffusion problem

Consider the problem− 2∆u+u = f with homogeneous Neumann boundary condition in a bounded smooth domain in RN . The whole range 0 < ≤ 1 is treated. The Galerkin finite element method is used on a globally quasi-uniform mesh of size h; the mesh is fixed and independent of . A precise analysis of how the error at each point depends on h and is presented. As an application, first order error estima...

متن کامل

Mesh Refinement Strategies for Solving Singularly Perturbed Reaction-Diffusion Problems

we consider the numerical approximation of a singularly perturbed reaction-diffusion problem over a square. Two different. approaches are compared namely: adaptive isotropic mesh refinement and anisotropic mesh refinement. Thus, we compare the h-refinement and the Shishkin mesh approaches numerically with PLTMG software [l]. It is shown how isotropic elements lead to over-refinement. and how an...

متن کامل

Stabilised approximation of interior-layer solutions of a singularly perturbed semilinear reaction-diffusion problem

A semilinear reaction-diffusion two-point boundary value problem, whose secondorder derivative is multiplied by a small positive parameter ε2, is considered. It can have multiple solutions. The numerical computation of solutions having interior transition layers is analysed. It is demonstrated that the accurate computation of such solutions is exceptionally difficult. To address this difficulty...

متن کامل

Maximum norm error analysis of a 2d singularly perturbed semilinear reaction-diffusion problem

A semilinear reaction-diffusion equation with multiple solutions is considered in a smooth two-dimensional domain. Its diffusion parameter ε2 is arbitrarily small, which induces boundary layers. Constructing discrete suband super-solutions, we prove existence and investigate the accuracy of multiple discrete solutions on layer-adapted meshes of Bakhvalov and Shishkin types. It is shown that one...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & mathematics with applications

سال: 2022

ISSN: ['0898-1221', '1873-7668']

DOI: https://doi.org/10.1016/j.camwa.2022.01.031